New view of Arctic cyclone activity from the Arctic system reanalysis

نویسندگان

  • Natalia Tilinina
  • Sergey K. Gulev
  • David H. Bromwich
چکیده

Arctic cyclone activity is analyzed in 11 year (2000–2010), 3-hourly output from the Arctic System Reanalysis (ASR) interim version. Compared to the global modern era reanalyses (European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim, Modern Era Retrospective Analysis for Research and Applications, and National Centers for Environmental Prediction-Climate Forecast System Reanalysis), ASR shows a considerably higher number of cyclones over the Arctic with the largest differences over the high-latitude continental areas (up to 40% in summer and 30% in winter). Over the Arctic Ocean during both seasons ASR captures well the cyclonemaximum in the Eastern Arctic which has 30% less cyclones in summer and is hardly detectable in winter in ERA-Interim. High resolution of the ASR model coupled with more comprehensive data assimilation allows for more accurate (compared to the global reanalyses) description of the life cycle of themost intense Arctic cyclones, for which ASR shows lower central pressure (4hPa on average), faster deepening, and stronger winds on average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar Cyclone Identification from 4D Climate Data in a Knowledge-Driven Visualization System

Arctic cyclone activity has a significant association with Arctic warming and Arctic ice decline. Cyclones in the North Pole are more complex and less developed than those in tropical regions. Identifying polar cyclones proves to be a task of greater complexity. To tackle this challenge, a new method which utilizes pressure level data and velocity field is proposed to improve the identification...

متن کامل

Atmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution

The simulation of Arctic sea ice and surface winds changes significantly when CCSM3 resolution is increased from T42 ( 2.8 deg) to T85 ( 1.4 deg). At T42 resolution, Arctic sea ice is too thick off the Siberian coast and too thin along the Canadian coast. Both of these biases are reduced at T85 resolution. The most prominent surface wind difference is the erroneous North Polar summer anticyclon...

متن کامل

Seasonal differences in the response of Arctic cyclones to climate change in CESM1

Unprecedented warming in the Arctic has led to a dramatic reduction in both the extent and thickness of Arctic sea ice (Stroeve et al. 2011), opening up opportunities for business in diverse sectors such as fossil fuel and mineral extraction, shipping and tourism (Jung et al. 2016). Industrial activities in the Arctic are expected to be subject to high levels of investment over the coming decad...

متن کامل

The impact of an intense summer cyclone on 2012 Arctic sea ice retreat

[1] This model study examines the impact of an intense early August cyclone on the 2012 record low Arctic sea ice extent. The cyclone passed when Arctic sea ice was thin and the simulated Arctic ice volume had already declined ~40% from the 2007–2011 mean. The thin sea ice pack and the presence of ocean heat in the near surface temperature maximum layer created conditions that made the ice part...

متن کامل

The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data

The Arctic has experienced large climate changes over recent decades, the largest for any region on Earth. To understand the underlying reasons for this climate sensitivity, reanalysis is an invaluable tool. The Arctic System Reanalysis (ASR) is a regional reanalysis, forced by ERA-Interim at the lateral boundaries and incorporating model physics adapted to Arctic conditions, developed to serve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014